
Nuts Node Documentation

Nuts community

Jun 01, 2022

GETTING STARTED:

1 “Hello World” on Docker 1

2 Running on Docker 3

3 Running the native binary 5

4 Setting up your node for a network 7

5 Getting Started on customer integration 11

6 Signing a contract with IRMA 17

7 Getting started with Authorizations 25

8 Getting Started on EHR integration 31

9 Decentralized identifiers 33

10 Verifiable Credentials 35

11 VC Concept mapping 37

12 Nuts node development 41

13 API development 43

14 Issuing and searching Verifiable Credentials 45

15 Events 49

16 Nuts Node APIs 51

17 Nuts node config 53

18 Contribute 55

19 Release notes 57

20 Roadmap 59

21 Nuts node monitoring 61

22 Adminstering your node 67

i

23 Configuring for Production 69

24 Contact 73

ii

CHAPTER

ONE

“HELLO WORLD” ON DOCKER

The simplest way to spin up the Nuts stack is by using the setup provided by nuts-network-local. The setup is meant for
development purposes and starts a Nuts node, “Demo EHR”, “Registry Admin Demo” for administering your vendor
and care organizations and a HAPI server to exchange FHIR data.

To get started, clone the repository and run the following commands to start the stack:

cd single
docker compose pull
docker compose up

After the services have started you can try the following endpoints:

• Nuts Node status page.

• Registry Admin Demo login (default password: “demo”).

• Demo EHR login (default password: “demo”).

1

https://github.com/nuts-foundation/nuts-network-local
http://localhost:1323/status/diagnostics/
http://localhost:1304/
http://localhost:1303/

Nuts Node Documentation

2 Chapter 1. “Hello World” on Docker

CHAPTER

TWO

RUNNING ON DOCKER

If you already use Docker, the easiest way to get your Nuts Node up and running for development or production
is using Docker. This guide helps you to configure the Nuts node in Docker. To use the latest master build use
nutsfoundation/nuts-node:master (for production environments it’s advisable to use a specific version).

First determine the working directory for the Nuts node which will contain configuration and data. These which will
be mounted into the Docker container. Follow the configuration to setup the configuration of your node.

2.1 Mounts

Using this guide the following resources are mounted:

• Readonly PEM file with TLS certificate and private key. They can be separate but in this example they’re con-
tained in 1 file.

• Readonly PEM file with TLS truststore for the particular network you’re connecting to.

• Readonly nuts.yaml configuration file.

• Data directory where data is stored.

2.2 Docker run

If you want to run without Docker Compose you can use the following command from the working directory:

docker run --name nuts -p 5555:5555 -p 1323:1323 \
--mount type=bind,source="$(pwd)"/certificate-and-key.pem,target=/opt/nuts/certificate-

→˓and-key.pem,readonly \
--mount type=bind,source="$(pwd)"/truststore.pem,target=/opt/nuts/truststore.pem,

→˓readonly \
--mount type=bind,source="$(pwd)"/nuts.yaml,target=/opt/nuts/nuts.yaml,readonly \
--mount type=bind,source="$(pwd)"/data,target=/opt/nuts/data \
-e NUTS_CONFIGFILE=/opt/nuts/nuts.yaml \
nutsfoundation/nuts-node:master

This setup uses the following nuts.yaml configuration file:

datadir: /opt/nuts
network:
truststorefile: /opt/nuts/truststore.pem
certfile: /opt/nuts/certificate-and-key.pem

(continues on next page)

3

Nuts Node Documentation

(continued from previous page)

certkeyfile: /opt/nuts/certificate-and-key.pem
bootstrapnodes:

- example.com:5555

Note: The command above uses pwd and bash functions, which do not work on Windows. If running on Windows
replace it with the path of the working directory.

You can test whether your Nuts Node is running properly by visiting http://localhost:1323/status/diagnostics. It should
display diagnostic information about the state of the node.

2.3 Docker Compose

Copy the following YAML file and save it as docker-compose.yaml in the working directory.

version: "3.7"
services:
nuts:
image: nutsfoundation/nuts-node:master
environment:
NUTS_CONFIGFILE: /opt/nuts/nuts.yaml

ports:
- 5555:5555
- 1323:1323

volumes:
- "./certificate-and-key.pem:/opt/nuts/certificate-and-key.pem:ro"
- "./truststore.pem:/opt/nuts/truststore.pem:ro"
- "./nuts.yaml:/opt/nuts/nuts.yaml:ro"
- "./data:/opt/nuts/data:rw"

Start the service:

docker-compose up

4 Chapter 2. Running on Docker

CHAPTER

THREE

RUNNING THE NATIVE BINARY

The Nuts executable this project provides can be used to both run a Nuts server (a.k.a. node) and administer a running
node remotely. This guide explains how to run a Nuts node using the native binary.

3.1 Building

Since no precompiled binaries exist (yet), you’ll have to build the binary for your platform.

First check out the project using:

git clone https://github.com/nuts-foundation/nuts-node
cd nuts-node

Then create the executable using the make command:

make build

Or if make is not available:

go build -ldflags="-w -s -X 'github.com/nuts-foundation/nuts-node/core.GitCommit=GIT_
→˓COMMIT' -X 'github.com/nuts-foundation/nuts-node/core.GitBranch=GIT_BRANCH' -X 'github.
→˓com/nuts-foundation/nuts-node/core.GitVersion=GIT_VERSION'" -o /path/to/nuts

Make sure GIT_COMMIT, GIT_BRANCH and GIT_VERSION are set as environment variables. These variables help
identifying an administrator and other nodes what version your node is using. If this isn’t important then replace
GIT_COMMIT with 0, GIT_BRANCH with master and GIT_VERSION with undefined.

3.2 Starting

Start the server using the server command:

nuts server

Now continue with the configuration.

5

Nuts Node Documentation

6 Chapter 3. Running the native binary

CHAPTER

FOUR

SETTING UP YOUR NODE FOR A NETWORK

After you managed to start your node using either docker or native it’s time to connect to a network.

4.1 Prerequisites

The following is needed to connect a Nuts node to a network:

1. A runnable node.

2. The public address of one or more remote nodes you’d like to use as bootstrap nodes.

3. A TLS client- and server certificate which is accepted by the other nodes in the network (e.g. PKIoverheid).

4. A truststore containing the CA trust anchors for TLS certificates the network you’re connecting to accepts (e.g.
PKIoverheid).

To connect to the development network you can use the nuts-development-network-ca by cloning https://
github.com/nuts-foundation/nuts-development-network-ca. That project contains scripts to generate cer-
tificates, and a truststore.

4.2 Configuring

1. Configure the bootstrap nodes using network.bootstrapnodes.

2. Configure TLS using network.certfile, network.certkeyfile and network.truststorefile.

See configuration reference for a detailed explanation on how to exactly configure the Nuts node.

Note: You _can_ start the node without configuring the network, but it won’t connect and thus exchange data with
other nodes.

7

Nuts Node Documentation

4.2.1 YAML Configuration File

If you’re using a YAML file to configure your node, the following snippet shows an example for the network related
configuration:

network:
truststorefile: /path/to/truststore.pem
certfile: /path/to/certificate-and-key.pem
certkeyfile: /path/to/certificate-and-key.pem
bootstrapnodes:

- example.com:5555

4.2.2 Node TLS Certificate

To connect to an existing Nuts network you need a TLS certificate which authenticates your node. For the development
network you can use the nuts-network-development-ca to directly issue a certificate for your node. The commands
below clone the required Git repository, generate a private key and issues a certificate, and combines them into a single
file:

git clone https://github.com/nuts-foundation/nuts-development-network-ca
cd nuts-development-network-ca && ./issue-cert.sh localhost
cat localhost.key localhost.pem > certificate-and-key.pem

Note: If you want peers to be able to connect to your node, replace localhost with the correct hostname.

Note that the Git repository contains the Certificate Authority certificate (ca.pem) which will function as truststore.
Copy this file as truststore.pem into the working directory.

4.2.3 Node Identity

Certain data (e.g. private credentials) can only be exchanged when a peer’s DID has been authenticated. To make
sure other nodes can authenticate your node’s DID you need to configure your node’s identity, and make sure the DID
document contains a NutsComm service that matches the TLS certificate.

Your node identity is expressed by a DID that is managed by your node, also known as your vendor DID. So make sure
you have created a DID specific for your nodes and configure it as network.nodedid (see configuration reference).

Then you make sure the associated DID Document contains a NutsComm endpoint, where the domain part (e.g. nuts.
nl) matches (one of) the DNS SANs in your node’s TLS certificate. See “Node Discovery” below for more information
on registering the NutsComm endpoint.

Note: Multiple nodes may share the same DID, if they’re governed by the same organization (e.g., clustered setups).

8 Chapter 4. Setting up your node for a network

Nuts Node Documentation

4.2.4 Node Discovery

To allow your Nuts node to be discovered by other nodes, so they can connect to it, you need to register a NutsComm
endpoint on your vendor DID document. The NutsComm endpoint contains a URL to your node’s public gRPC service,
and must be in the form of grpc://<host>:<port>. E.g., if it were to run on nuts.nl:5555, the value of the
NutsComm endpoint should be grpc://nuts.nl:5555

You can register the NutsComm endpoint by calling addEndpoint on the DIDMan API:

POST <internal-node-address>/internal/didman/v1/did/<vendor-did>/endpoint
{

"type": "NutsComm",
"endpoint": "grpc://nuts.nl:5555"

}

4.3 Care Organizations

The DID documents of your care organizations you (as a vendor) want to expose on the Nuts network need to be
associated with your vendor’s DID document through the NutsComm endpoint. Its recommended to register the actual
NutsComm endpoint on your vendor DID document (as explained in the previous section), and register a reference to
this endpoint on the DID documents of your vendor’s care organizations:

POST <internal-node-address>/internal/didman/v1/did/<care-organization-did>/endpoint
{

"type": "NutsComm",
"endpoint": "<vendor-did>/serviceEndpoint?type=NutsComm"

}

4.3. Care Organizations 9

Nuts Node Documentation

10 Chapter 4. Setting up your node for a network

CHAPTER

FIVE

GETTING STARTED ON CUSTOMER INTEGRATION

This getting started manual assumes a vendor sells services to its customers. The vendor manages the presence of those
customers on the Nuts network through the Nuts registry. It’s very likely the vendor has software to manage customer
environments. We’ll call it a CRM where the customers part relates to organizations and not people. This does not
mean that a stand-alone installation isn’t supported. In that case the vendor and organization are the same.

The Nuts registry enables service discovery for organizations. The registry identifies organizations through their DID.
The DIDs are unique identifiers which are generated when the organization is registered in the Nuts registry. After
creation of the DID the CRM should store and map it to its customer record, so it can refer to it when updating the
customer’s DID Document and issue Verifiable Credentials.

All APIs used in the following chapters are documented at the API page. Open API Spec files are available for gener-
ating client code.

5.1 Vendor integration

As a vendor, you’re in power of:

• running a Nuts node

• handling organization key material

• updating the organization DID Document

• defining service endpoints

• issuing name credentials for organizations

• trusting other vendors

The last three points require a setup where a vendor DID is created. This DID will act as the controller of all organization
DID Documents. This will allow for reuse of service endpoints and issuance of Verifiable Credentials. Since every
DID issuing Verifiable Credentials must be trusted individually, it’s easier for other vendors when the vendor uses a
single DID for issuing credentials.

11

Nuts Node Documentation

5.1.1 Create and store a vendor DID

Your CRM must store the DIDs created for your vendor and your customers. A DID is a string similar to:

did:nuts:2mF6KT6eiSx5y2fwTP4Y42yMUh91zGVkbu4KMARvCJz9

The DID we’re about to create is your vendor DID. It will be used in the all of the next steps. For the API calls that will
need to be made to the Nuts node, we’ll use <internal-node-address> as the address where the internal API’s are
exposed. Consult the configuration reference on how to configure the node address.

POST <internal-node-address>/internal/vdr/v1/did
{

"selfControl": true,
"keyAgreement": true,
"assertionMethod": true,
"capabilityInvocation": true

}

The request above instructs the node to create a new DID and DID Document. The DID Document will be published to
all other nodes. The node will generate a new keypair and store it in the crypto backend. The options above will instruct
the node to allow the DID Document to be changed by itself (selfControl = true AND capabilityInvocation
= true) and that the DID can be used to issue credentials (assertionMethod = true). If all is well, the node will
respond with a DID Document similar to:

{
"@context": ["https://www.w3.org/ns/did/v1"],
"id": "did:nuts:2mF6KT6eiSx5y2fwTP4Y42yMUh91zGVkbu4KMARvCJz9",
"verificationMethod": [
{
"id": "did:nuts:2mF6KT6eiSx5y2fwTP4Y42yMUh91zGVkbu4KMARvCJz9#_

→˓TKzHv2jFIyvdTGF1Dsgwngfdg3SH6TpDv0Ta1aOEkw",
"controller": "did:nuts:2mF6KT6eiSx5y2fwTP4Y42yMUh91zGVkbu4KMARvCJz9",
"type": "JsonWebKey2020",
"publicKeyJwk": {
"crv": "P-256",
"x": "38M1FDts7Oea7urmseiugGW7tWc3mLpJh6rKe7xINZ8",
"y": "nDQW6XZ7b_u2Sy9slofYLlG03sOEoug3I0aAPQ0exs4",
"kty": "EC"

}
}],

"capabilityInvocation": [
"did:nuts:2mF6KT6eiSx5y2fwTP4Y42yMUh91zGVkbu4KMARvCJz9#_

→˓TKzHv2jFIyvdTGF1Dsgwngfdg3SH6TpDv0Ta1aOEkw"
],
"assertion": [
"did:nuts:2mF6KT6eiSx5y2fwTP4Y42yMUh91zGVkbu4KMARvCJz9#_

→˓TKzHv2jFIyvdTGF1Dsgwngfdg3SH6TpDv0Ta1aOEkw"
],
"keyAgreement": [
"did:nuts:2mF6KT6eiSx5y2fwTP4Y42yMUh91zGVkbu4KMARvCJz9#_

→˓TKzHv2jFIyvdTGF1Dsgwngfdg3SH6TpDv0Ta1aOEkw"
],
"service": []

}

12 Chapter 5. Getting Started on customer integration

Nuts Node Documentation

The id at the top level needs to be extracted and stored as your vendor DID. In the example above this would be
did:nuts:2mF6KT6eiSx5y2fwTP4Y42yMUh91zGVkbu4KMARvCJz9. The DID Document shouldn’t be stored since
the Nuts node will do this for you.

5.1.2 Setting vendor contact information

Things can go wrong: a node is misbehaving or a DID Document is conflicted. If the node operator is not resolving
the problem it’s extremely convenient if others can contact the node operator and relay the problem. For this use-case,
Nuts supports the registration of node contact information. The contact information will be added to a DID Document
as a service. A convenience API is available to add the contact information to a DID Document. The vendor DID
should be used for this.

PUT <internal-node-address>/internal/didman/v1/did/<did>/contactinfo
{

"name": "vendor X",
"phone": "06-12345678",
"email": "info@example.com",
"website": "https://example.com"

}

Where <did> must be replaced with the vendor DID.

5.1.3 Adding endpoints

As a vendor you’ll probably be hosting different services at various stages. A Nuts node API is available to easily
add/remove the endpoints for these services. Registering services is a required step since the services that will be
registered for organizations will make use of these services.

POST <internal-node-address>/internal/didman/v1/did/<did>/endpoint
{

"type": "example-production-api",
"endpoint": "https://api.example.com"

}

Where <did> must be replaced with the vendor DID. The type may be freely chosen and is used as reference in the
organization services. The endpoint must be a valid endpoint (this differs per type of service). For some services this
could be a base-url. If this is the case, the bolt description will note this.

5.2 Organization integration

Each organization (or customer) must be registered with its own DID and DID Document. The vendor CRM should
make it possible to store a DID for each organization. Requests that are made in the context of the organization will
use the private key of the organization. To easily control the DID Document of an organization, the vendor will be the
controller.

5.2. Organization integration 13

Nuts Node Documentation

5.2.1 Create and store a customer DID

A DID can be created like the vendor DID:

POST <internal-node-address>/internal/vdr/v1/did
{

"selfControl": false,
"controllers": [<did>],
"assertionMethod": true,
"capabilityInvocation": false

}

Where <did>must be replaced with the vendor DID. The body for creating an organization DID differs from the vendor
DID in the fact that the vendor DID is in control of the newly generated DID Document. The assertionMethod is
still true since it’ll allow for the generation of access-tokens in the context of the organization. The result is similar to
the output of the vendor DID creation. In this case the id must also be extracted and stored within the vendor CRM
for the right organization.

5.2.2 Issue a Nuts Organization Credential

After registering an organization, its presence on the network and in the Nuts registry is now only a DID. In order for
other organizations to find the correct DID and connected services, credentials should be issued and published over
the network. For this, the NutsOrganizationCredential can be issued by any vendor. A NutsOrganizationCredential
contains the name of the organization and the city where this name is registered as organization. The combination of
those should be unique (since duplicate names within a sector is disallowed).

A credential can be issued with the following call:

POST <internal-node-address>/internal/vcr/v2/issuer/vc
{

"type": "NutsOrganizationCredential",
"issuer": "<issuer-did>",
"credentialSubject": {

"id": "<holder-did>",
"organization": {

"name": "<name>",
"city": "<city>"

}
},
"visibility": "public"

}

Where <issuer-did> must be replaced with the vendor DID, <holder-did> must be replaced with the organiza-
tion DID,``<name>`` and <city> must be replaced with the correct information. The API will respond with the full
Verifiable Credential. It’s not required to do anything with that since issued credentials can be found again.

14 Chapter 5. Getting Started on customer integration

Nuts Node Documentation

5.2.3 Trusting other vendors as issuer

A node operator must not blindly trust all the data is published over the network. Before credentials can be found, the
issuer has to be trusted. By default, no issuers are trusted. A list of untrusted issuers can be obtained from the node
through:

GET <internal-node-address>/internal/vcr/v2/verifier/NutsOrganizationCredential/untrusted

This will return a list of all DIDs that are currently not trusted. If a DID is to be trusted should be validated out-of-band,
eg: by phone or video conference call. The registered contact information for that DID could help in contacting the
right party. Be aware that the provided contact information isn’t verified. So instead of asking: “is this your DID?”,
ask: “could you please tell me your DID?”. After a DID has been verified, it can be trusted by calling the following
API:

POST <internal-node-address>/internal/vcr/v2/verifier/trust
{

"issuer": "<did>",
"credentialType": "NutsOrganizationCredential"

}

Where <did> must be replaced with the validated DID. It’s also possible to update the vcr/trusted_issuers.yaml
file located in the data directory (configured via the datadir property). After a vendor has been trusted, any of its
registered organizations should be searchable by name.

Note: Future development will see new cryptographic means. These means could enable the organization to self-
register its name. The network should then migrate to a trust model where the issuer of those means is trusted instead
of the different vendors.

5.2.4 Enabling a bolt

Organizations can be found on the network and endpoints have been defined. Now it’s time to enable specific bolts so
users can start using data from other organizations. Every bolt requires its own configuration. This configuration is
known as a Compound Service on the organization’s DID document. A Compound Service defines certain endpoint
types and which endpoint to use for that type.

A Compound Service can be added with the following request:

POST <internal-node-address>/internal/didman/v1/did/<did>/compoundservice
{

"type": "<type>",
"serviceEndpoint": {

"<X>": "<endpoint_did>/serviceEndpoint?type=<Y>",
...

}
}

The parameters must be replaced:

• <did> must be replaced with the organization DID.

• <type> must be replaced with the type defined by the bolt specification.

• <endpoint_did> must be replaced with the vendor DID that defines the endpoints.

5.2. Organization integration 15

Nuts Node Documentation

• <X> must be replaced with the type required by the bolt specification. All types defined by the specification must
be added, unless stated otherwise.

• <Y> must be replaced with the correct endpoint type from the vendor DID Document. <endpoint_did>/
serviceEndpoint?type=<Y> must be a valid query within the corresponding DID Document.

For example, the eOverdracht sender requires an eOverdracht-sender Compound Service with two endpoints: an
oauth endpoint and a fhir endpoint. The example can be added by the following request:

POST <internal-node-address>/internal/didman/v1/did/did:nuts:organization_identifier/
→˓compoundservice
{

"type": "eOverdracht-sender",
"serviceEndpoint": {

"oauth": "did:nuts:vendor_identifier/serviceEndpoint?type=production-oauth",
"fhir": "did:nuts:vendor_identifier/serviceEndpoint?type=eOverdracht-sender-fhir"

}
}

Note: As specified by RFC006, the type MUST be unique within a DID Document.

16 Chapter 5. Getting Started on customer integration

https://nuts-foundation.gitbook.io/bolts/eoverdracht/leveranciersspecificatie#4-1-2-organisatie-endpoint-discovery
https://nuts-foundation.gitbook.io/drafts/rfc/rfc006-distributed-registry#4-services

CHAPTER

SIX

SIGNING A CONTRACT WITH IRMA

This getting started manual shows how to successfully use IRMA to sign a contract. Contracts are used within the Nuts
ecosystem to identify a user to other network participants. It also relates a user to the care organization that user is
currently working for. The signed contract is used as token to authenticate the user’s (local) EHR identity to other nodes
in the network and can be used as session token on the EHR. The contract is required for every request that results in
personal and/or medical data being retrieved.

6.1 Basic requirements

To use IRMA as a means for signing a contract, the following is required:

• the user has the IRMA app installed on an Android or iOS device with camera and an internet connection.

• the user has retrieved the BRP and email credentials in the IRMA app.

• the user interacts with the XIS/ECD via a recent browser capable of running javascript.

• the vendor has a Nuts node running.

6.2 IRMA flow

We use the Nuts node as IRMA server and as tool to start an IRMA session. This follow the flow as described on this
IRMA Github page. The XIS/ECD will have to provide two endpoints for the frontend. One endpoint to start a session
and one to get the session result. More info on these endpoints will be provided further down.

6.3 Configuring the Nuts node

In the contract signing flow, the device running the IRMA app communicates with the Nuts node directly. Therefore
the Nuts node needs to be accessible to the public internet. All APIs on the Nuts node starting with /public (without
a trailing slash) must be accessible over HTTPS without any additional security measures that could prevent access by
mobile devices. A domain must also be available which resolves to those APIs. The domain must be configured on the
Nuts node:

auth:
publicurl: https://example.com

The Nuts APIs used for signing will embed this URL in the QR code shown to the user. The javascript in the frontend
will also use this URL (exposed via the QR code) to check the status of the signing session. Therefore the domain

17

https://github.com/privacybydesign/irma-frontend-packages#supported-irma-flows

Nuts Node Documentation

which serves the frontend must be able to do requests to that domain. The browser will require CORS headers to be
configured on the domain configured in the Nuts node config. This can be done by the following snippet:

http:
default:

cors:
origin: "other.com"

Where other.com is the domain serving the frontend. For development purposes * is also allowed. If the public APIs
are mounted on a different port/interface in the nuts config then the default key should be changed to public in the
example above.

6.4 Setting up the frontend

For the frontend we’ll be using the irma-frontend-packages javascript library. More info on how to use this library
can be found on `https://irma.app/docs/irma-frontend/`_. You can choose to load the IRMA frontend packages
javascript via an HTML tag, in which case you’ll need to build the javascript file yourself given the instructions on
`https://github.com/privacybydesign/irma-frontend-packages`_ or you can choose to use npm:

"dependencies": {
"@privacybydesign/irma-frontend": "^0.3.3"

}

Make sure you use the latest version.

IRMA allows for multiple frontends to be used. The most important ones are the web and popup frontends. The web
frontend allows for embedding the IRMA web component within a html element. The popup frontend will render a
new component that will render on top of the rest of the website. This manual will use the popup frontend.

A complete example:

let options = {
// Developer options
debugging: true,

// Front-end options
language: 'en',

// customize textual components
translations: {
header: "Sign your contract"

},

// Back-end options
session: {
// Point to your web backend
url: '/web/auth',

// The request that will be send to the backend:
start: {
method: 'POST',
headers: {
'Content-Type': 'application/json'

(continues on next page)

18 Chapter 6. Signing a contract with IRMA

https://github.com/privacybydesign/irma-frontend-packages

Nuts Node Documentation

(continued from previous page)

},
body: JSON.stringify(this.some_data)

},

// required to translate Nuts specific return values
mapping: {
sessionPtr: r => r.sessionPtr.clientPtr,
sessionToken: r => r.sessionID

}
}

};

// we'll use the popup frontend
let irmaPopup = irma.newPopup(options);

// start the interaction
irmaPopup.start()

.then(result => {
console.log("success!")
console.log(response)

})
.catch(error => {
if (error === 'Aborted') {
console.log('Aborted');
return;

}
console.error("error", error);

})
.finally(() => irmaPopup = irma.newPopup(options));

}

Lets break this down into parts.

// Developer options
debugging: true,

Is used to enabling debugging. The IRMA library will output more information helpful for development.

// Front-end options
language: 'en',

// customize textual components
translations: {
header: "Sign your contract"

},

Sets the language to english which will set some default textual representations on the IRMA web component. The
translations configuration option can be used to change each of the textual representation on the IRMA web com-
ponent. In this case, only the header is changed.

// Back-end options
session: {
// Point to your web backend

(continues on next page)

6.4. Setting up the frontend 19

Nuts Node Documentation

(continued from previous page)

url: '/web/auth',

// The request that will be send to the backend:
start: {
method: 'POST',
headers: {
'Content-Type': 'application/json'

},
body: JSON.stringify(this.some_data)

},

// required to translate Nuts specific return values
mapping: {
sessionPtr: r => r.sessionPtr.clientPtr,
sessionToken: r => r.sessionID

}
}

The session object contains all the technical parts to connect the IRMA javascript library to your backend. The
contents of the start object configures the initial request to start a signing session. You can control the type of request
and the contents. In this case, some data from the frontend is sent as JSON. This is optional and no particular data is
required. The url, in this case /web/auth, must be set so the frontend can access the following URLs:

<url>/session
<url>/session/<sessionToken>/result

These URLs must both be available on the backend. For the example above this means that both /web/auth/session/
and /web/auth/session/<sessionToken>/result are available. The <sessionToken> is the token that will be
returned by the call to <url>/session/. How to parse the result of that call and extract the token is done via the
mapping object.

The mapping object is a map where two keys are expected: sessionPtr and sessionToken. sessionPtr must
point to the data that is used to render the QR code. sessionToken must point to the session token used to get the
result.

6.5 Setting up the backend

As discussed in the previous chapter, the backend is required to expose two APIs to the frontend:

<url>/session
<url>/session/<sessionToken>/result

No particular security context is required, you may require a user session if needed.

20 Chapter 6. Signing a contract with IRMA

Nuts Node Documentation

6.5.1 Starting a session

The <url>/session API is used to start a session. To start a session at the Nuts node, a valid contract has to be drawn
up first. You can create such a contract with the following API on the Nuts node:

PUT /internal/auth/v1/contract/drawup

With the following body:

{
"type": "BehandelaarLogin",
"language": "NL",
"version": "v3",
"legalEntity": "did:nuts:90348275fjasihnva4857qp39hn",
"validFrom": "2006-01-02T15:04:05+02:00",
"validDuration": "2h"

}

The type must be one of the valid Nuts contract types, currently only BehandelaarLogin for Dutch and
PractitionerLogin for English are supported. The language` selects the correct language, NL for Dutch and EN
for english. The version must be v3. The legalEntity must refer to the DID of the current organization. The user
either selects an organization to login for, or is already logged in. The organization must have a DID as described in
Getting Started on customer integration. validFrom is a RFC3339 compliant time string. validDuration describes
how long the contract is valid for. Time unit strings are used like 1h or 60m, the valid time units are: “ns”, “us” (or
“µs”), “ms”, “s”, “m”, “h”. The local system timezone is used to format the date and time string.

The return value looks like:

{
"type": "PractitionerLogin",
"language": "EN",
"version": "v3",
"message": "EN:PractitionerLogin:v3 I hereby declare to act on behalf of CareBears␣

→˓located in CareTown. This declaration is valid from Monday, 2 January 2006 15:04:05␣
→˓until Monday, 2 January 2006 17:04:05."
}

The message from this result is used in the next part. Start an IRMA session by calling the following API on the Nuts
node:

POST /internal/auth/v1/signature/session

The body for this call looks like:

{
"means": "irma",
"payload": "<message>"

}

Where message is the result from the contract call. The result from this call must be passed directly to the frontend.
If any transformation is done, the mapping setting in the frontend must be changed accordingly.

6.5. Setting up the backend 21

Nuts Node Documentation

6.5.2 Getting the session result

The IRMA javascript frontend library will check for the status of the signing session. When the session has been
completed it’ll call the following url:

GET <url>/session/<sessionToken>/result

where <url> is the base url configured under session.url in the javascript options and <sessionToken> is the
token returned by the previous call. The backend must implement this API, the implementation must call the following
API on the Nuts node:

GET /internal/auth/v1/signature/session/<sessionToken>

Any error in calling this service need to be relayed to the frontend. This will instruct the user on why things went wrong
and what to do next. The call to the Nuts node will return the following response:

{
"status": "completed",
"verifiablePresentation": {

...
}

}

The status field has a different content when a different signing means is used. The presence of the
verifiablePresentation in the result is the main method of checking if the signing session succeeded.
verifiablePresentation is the cryptographic proof that needs to be stored in the user session. It’s required in
the OAuth flow for obtaining an access token. The backend should check if the signed contract (verifiable presentation)
is still valid when using it. The validity can be checked by calling the following API with the verifiable presentation at
the place of <vp>:

PUT /internal/auth/v1/signature/verify

with

{
"checkTime": "2006-01-02T15:54:05+02:00",
"verifiablePresentation": <vp>

}

It will return a structure similar to:

{
"validity": true,
"vpType": "NutsIrmaPresentation",
"issuerAttributes": {
"pbdf.gemeente.personalData.initials": "T",

"pbdf.gemeente.personalData.prefix": "",
"pbdf.gemeente.personalData.familyname": "Tester",
"pbdf.sidn-pbdf.email.email": "tester@example.com"

},
"credentials": {
"organization": "CareBears",
"validFrom": "2006-01-02T15:04:05+02:00",
"validTo": "2006-01-02T17:04:05+02:00"

(continues on next page)

22 Chapter 6. Signing a contract with IRMA

Nuts Node Documentation

(continued from previous page)

}
}

The validity will indicate its validity. An expired contract is considered invalid.

6.5. Setting up the backend 23

Nuts Node Documentation

24 Chapter 6. Signing a contract with IRMA

CHAPTER

SEVEN

GETTING STARTED WITH AUTHORIZATIONS

Authorization is one of the three core concepts of Nuts (the others being identification and addressing).

7.1 Introduction

Authorization comes in the form of a NutsAuthorizationCredential. An authorization credential is a privately dis-
tributed credential that answers:

• which custodian controls the resources

• to which patient do the resources belong to

• which actor may access the resources

• what is the scope of the authorization

• on what legal base is the authorization provided

• which individual resources may be accessed

Authorization credentials are issued by the same party that will also control the access to the resources.

7.1.1 Bolt

A Bolt is a functional and technical specification that translates a care process to technical requirements. An autho-
rization is created for a particular Bolt. A Bolt specifies what the possible values of purposeOfUse can be. Each value
corresponds to an access policy defined by the Bolt. Creating an authorization credential that is not according to a
Bolt specification will have little effect or will even hinder interoperability. Particular requirements for a Bolt are not
validated by the node, the node will only do the validations as specified.

7.1.2 Prerequisites

Since authorization credentials are privately distributed, their exchange only happens over authenticated connections.
To query authorization credentials (issued to your care organization(s)) or let the authorized party query an authorization
credential you issued, you need to configure your node’s identity and NutsComm endpoint. See setting up your node for
a network for how to achieve this.

25

https://nuts-foundation.gitbook.io/drafts/rfc/rfc014-authorization-credential

Nuts Node Documentation

7.2 Registering a NutsAuthorizationCredential

Issuing an authorization credential is similar to issuing an organization credential. Both use the same API. New cre-
dentials will automatically receive an id, issuanceDate, context and proof. A DID requires a valid assertionMethod
key.

The credential can be issued with the following call:

POST <internal-node-address>/internal/vcr/v2/issuer/vc
{

"issuer": "did:nuts:JCJEi3waNGNhkmwVvFB3wdUsmDYPnTcZxYiWThZqgWKv",
"type": "NutsAuthorizationCredential",
"credentialSubject": {

"id": "did:nuts:JCJEi3waNGNhkmwVvFB3wdUsmDYPnTcZxYiWThZqgWKv",
"legalBase": {

"consentType": "implied"
},
"resources": [

{
"path": "/patient/2250f7ab-6517-4923-ac00-88ed26f85843",
"operations": ["read"],
"userContext": true

}
],
"purposeOfUse": "test-service",
"subject": "urn:oid:2.16.840.1.113883.2.4.6.3:123456780"

},
"visibility": "private"

}

As you can see, there are quite some fields to fill out. The following paragraphs will dig deeper into the different parts.

7.2.1 issuer

The issuer is the resource owner. It must be a DID of an organization for which you control the private key. The DID
typically comes from your own administration, see also :ref:`Getting Started on customer integration <connecting-
crm>`_.

26 Chapter 7. Getting started with Authorizations

https://nuts-foundation.gitbook.io/drafts/rfc/rfc011-verifiable-credential#3-1-1-jsonwebsignature2020
https://nuts-foundation.gitbook.io/drafts/rfc/rfc011-verifiable-credential#3-1-1-jsonwebsignature2020

Nuts Node Documentation

7.2.2 type

The type must equal [“NutsAuthorizationCredential”], no exceptions.

7.2.3 visibility

VCs that are published to the network can be published publicly or private. When published private, only the issuer and
subject can read the contents of the VC. VCs that contain personal information must be published privately (visibility
= private). When the VC is to be read by anyone on the network, it should be published publicly (visibility = public).

7.2.4 credentialSubject.id

The credentialSubject.id is the receiver or holder of the credential. It must be a DID of an organization. This DID is
typically found via a search call. The following call will search for an organization with the name CareBears.

POST <internal-node-address>/internal/vcr/v2/search
{

"query": {
"@context": [

"https://www.w3.org/2018/credentials/v1",
"https://nuts.nl/credentials/v1"

],
"type": ["VerifiableCredential" ,"NutsOrganizationCredential"],
"credentialSubject": {

"organization": {
"name": "CareBears"

}
}

}
}

The :ref:`VC manual <using-vcs>`_ contains some more information on how to perform searches.

7.2.5 credentialSubject.purposeOfUse

The credentialSubject.purposeOfUse field will be filled with a fixed value. A Bolt specification will describe what
value to put here.

7.2.6 credentialSubject.subject

The credentialSubject.subject field identifies the patient. Resources that are scoped to a patient will have an authoriza-
tion record with a patient identifier. It’s possible for authorization records to not include this field. A Bolt specification
should describe when to use this field and when not. The contents in this example is a urn with a Dutch citizens
number.

7.2. Registering a NutsAuthorizationCredential 27

Nuts Node Documentation

7.2.7 credentialSubject.legalBase

This field describes the legal base from which the authorization credential originates. A Bolt will what values are to
be entered.

7.2.8 credentialSubject.resources

The resources array describes what resources may be accessed with the authorization credential. Unless stated other-
wise by the Bolt, these resources are in addition to any common resources listed by the access policy of the Bolt. A
resource has 3 members: path, operations and userContext. See the Nuts specification for more detail.

7.3 Searching for authorization credentials

Authorization credentials can be used as a distributed index: where can I find information for patient X?. When an
access token is requested via the API, references to the relevant authorization credentials are required.

To find the relevant authorization credentials, the credential search API can be used. To find all authorization credentials
of a single patient:

POST <internal-node-address>/internal/vcr/v2/search
{

"query": {
"@context": [

"https://www.w3.org/2018/credentials/v1",
"https://nuts.nl/credentials/v1"

],
"type": ["VerifiableCredential" ,"NutsAuthorizationCredential"],
"credentialSubject": {

"id": "did:nuts:JCJEi3waNGNhkmwVvFB3wdUsmDYPnTcZxYiWThZqgWKv",
"subject": "urn:oid:2.16.840.1.113883.2.4.6.3:123456780"

}
},
"searchOptions": {

"allowUntrustedIssuer": true
}

}

The call above includes a query for a particular receiver via the credentialSubject.id key. This would typically be
a DID from your own administration. The second parameter defines the patient. This example will return a list of
authorization credentials where the credentialSubject.purposeOfUse field will indicate what kind of information can
be retrieved. The untrusted query parameter must be added because authorization credentials are not issued by a trusted
third party but by organizations themselves.

It can also be the case that you need to find an authorization that covers a certain request. If you want to call
/patient/2250f7ab-6517-4923-ac00-88ed26f85843 for a particular Bolt, you can use:

POST <internal-node-address>/internal/vcr/v2/search
{

"query": {
"@context": [

"https://www.w3.org/2018/credentials/v1",
"https://nuts.nl/credentials/v1"

(continues on next page)

28 Chapter 7. Getting started with Authorizations

https://nuts-foundation.gitbook.io/drafts/rfc/rfc014-authorization-credential#3-2-4-resources

Nuts Node Documentation

(continued from previous page)

],
"type": ["VerifiableCredential" ,"NutsOrganizationCredential"],
"credentialSubject": {

"id": "did:nuts:JCJEi3waNGNhkmwVvFB3wdUsmDYPnTcZxYiWThZqgWKv",
"purposeOfUse": "test-service",
"resources": {

"path": "/patient/2250f7ab-6517-4923-ac00-88ed26f85843"
}

}
},
"searchOptions": {

"allowUntrustedIssuer": true
}

}

This call will return all authorization credentials with a purposeOfUse equal to test-service and with which you are
allowed to call the resource located at /patient/2250f7ab-6517-4923-ac00-88ed26f85843 Any value in an authorization
credential can be used as a param in the search API. The search key requires a valid JSON path expression.

7.3.1 Return values

When searching for authorization credentials, the credentials are returned as a verifiable credential. Most of the time,
you’ll only need the credential identifier, available in the root id field.

Example return value:

[
{

"@context": [
"https://www.w3.org/2018/credentials/v1",
"https://nuts.nl/credentials/v1"

],
"credentialSubject": {

"id": "did:nuts:JCJEi3waNGNhkmwVvFB3wdUsmDYPnTcZxYiWThZqgWKv",
"legalBase": {

"consentType": "implied"
},
"purposeOfUse": "test-service",
"resources": [

{
"operations": [

"read"
],
"path": "/patient/2250f7ab-6517-4923-ac00-88ed26f85843",
"userContext": true

}
],
"subject": "urn:oid:2.16.840.1.113883.2.4.6.3:123456780"

},
"id": "did:nuts:JCJEi3waNGNhkmwVvFB3wdUsmDYPnTcZxYiWThZqgWKv#314542e8-c8cc-4502-

→˓a7df-a815ac47c06b",
"issuanceDate": "2021-07-26T14:36:10.163463+02:00",

(continues on next page)

7.3. Searching for authorization credentials 29

Nuts Node Documentation

(continued from previous page)

"issuer": "did:nuts:JCJEi3waNGNhkmwVvFB3wdUsmDYPnTcZxYiWThZqgWKv",
"proof": {

"created": "2021-07-26T14:36:10.163463+02:00",
"jws": "eyJhbGciOiJFUzI1NiIsImI2NCI6ZmFsc2UsImNyaXQiOlsiYjY0Il19..

→˓k4cda7fMY05mnp4gsNJ3hNExjsSz3mqymyo4xJWkbb9-1URljVWIzPg6R62T-YETV7UXvz1X9QteuhbmoM1JLA
→˓",

"proofPurpose": "assertionMethod",
"type": "JsonWebSignature2020",
"verificationMethod": "did:nuts:JCJEi3waNGNhkmwVvFB3wdUsmDYPnTcZxYiWThZqgWKv

→˓#_3uOS5FqcyGj-cn-Yynv5epH0UVqbt_2BWXPfy0oKnU"
},
"type": [

"NutsAuthorizationCredential",
"VerifiableCredential"

]
}

]

30 Chapter 7. Getting started with Authorizations

CHAPTER

EIGHT

GETTING STARTED ON EHR INTEGRATION

This getting started manual assumes the vendor and its clients (care organizations) are set up on the Nuts Network
through Getting Started on customer integration. The next step is to integrate the vendor’s electronic health record
(EHR) with the Nuts node to execute Bolts.

All APIs used in the following chapters are documented at the API page. There you will also find the OpenAPI
specifications for generating client code.

8.1 Resolving Bolt endpoints

Bolts define which technical endpoints should be defined for exchanging information. These endpoints are grouped
as services which are generally named after the Bolt they support. The Nuts registry (as described by Getting Started
on customer integration) can be queried to find care organizations that support a particular Bolt, and to resolve the
technical endpoints associated with it.

8.1.1 Searching organizations

To find care organizations (registered in the Nuts registry) that support a specific Bolt, the search organization API can
be used. It takes a query parameter that’s used to match organization names and optionally a service type (from its DID
document). If the DID service type is supplied the API only returns organizations which DID Document has a service
with that type.

For example, the following API call searches the Nuts registry for organizations which name matches “Ziekenhuis” and
have a service of type “secure-direct-messaging” on their DID Document:

GET <internal-node-address>/internal/didman/v1/search/organizations?query=Ziekenhuis&
→˓didServiceType=secure-direct-messaging

Note: The example DID service type “secure-direct-messaging” could be defined by a (fictional) “Secure Direct
Messaging” Bolt to be published by organizations that allow their employees to securely chat with other organizations
through Nuts.

The API call returns a list of search results where each entry contains the organization and its last DID Document:

[
{
"didDocument": {
"@context": "https://www.w3.org/ns/did/v1",
"assertionMethod": [

(continues on next page)

31

Nuts Node Documentation

(continued from previous page)

"did:nuts:JCx4c3ufdKNgaZJ4h54AghY8ZgCznptNpjHUtzvVgcvW
→˓#Cv0c4hlz4My7pKa6Wh6UN7gnTAXi5WUpNChqsUuIL1A"

],
"controller": "did:nuts:5bSHwHtpSZfSCdCqaHvzDceEkjgNuKvTWVvQPB5DdeD9",
"id": "did:nuts:JCx4c3ufdKNgaZJ4h54AghY8ZgCznptNpjHUtzvVgcvW",
"verificationMethod": [
/* etc */

],
"service": {
"type": "secure-direct-messaging",
/* etc */

}
},
"organization": {
"city": "Doornenburg",
"name": "Fort Pannerden"

}
}

]

For an organization to be returned as search results the following requirements must be met:

• It must have an active DID Document.

• The issuer of its verifiable credential (NutsOrganizationCredential) must be trusted by the local node.

• Its verifiable credential must not be expired or revoked.

The query parameter is used to phonetically match the organization name: it supports partial matches and matches
that sound like the given query.

8.1.2 Resolving endpoints

When an organization has been selected, the next step is to resolve the technical endpoints. This is done by taking the
compound service as specified by the Bolt and resolving its endpoint references to an actual URL endpoints. You can
use the DIDMan getCompoundServiceEndpoint API operation for this.

8.2 Receiving Authorization Credentials

Some Bolts require authorization credentials to authenticate data exchanges. These credentials are distributed privately
over an authenticated connection. To receive privately distributed credentials issued to your care organizations, the DID
documents of the care organizations need to contain a NutsComm service that references the vendor’s. See setting up
your node for a network for how to achieve this.

32 Chapter 8. Getting Started on EHR integration

CHAPTER

NINE

DECENTRALIZED IDENTIFIERS

Nuts uses W3C Decentralized Identifiers as a base for tracking identities. From the W3C website:

Decentralized identifiers (DIDs) are a new type of identifier that enables verifiable, decentralized digi-
tal identity. A DID identifies any subject (e.g., a person, organization, thing, data model, abstract entity,
etc.) that the controller of the DID decides that it identifies. In contrast to typical, federated identifiers,
DIDs have been designed so that they may be decoupled from centralized registries, identity providers,
and certificate authorities. Specifically, while other parties might be used to help enable the discovery
of information related to a DID, the design enables the controller of a DID to prove control over it with-
out requiring permission from any other party. DIDs are URIs that associate a DID subject with a DID
document allowing trustable interactions associated with that subject.

Within Nuts, DIDs identify both care organizations and software vendors. All DID methods require their own specifi-
cation. The Nuts specification for the nuts DID method can be found on https://nuts-specification.readthedocs.io. Nuts
DIDs are designed so they represent public/private key pairs. Any party can generate and claim a key pair. Only when
information is added to the key pair, the key pair becomes important.

DIDs can gather claims through Verifiable Credentials. This allows a DID to actually represent something known in
real life. For example: adding an organization name credential connects the key pair to the name of the organization.
It connects the digital world to the real world.

9.1 DID Documents

DIDs are backed by a DID Document. It defines the public keys, who can alter the document and any services related
to the DID. DID documents are automatically propagated through the network when they are created. When DID
documents are created, the DID always represents the public key fingerprint of the associated key. A DID document is
always created with a new key, the holder of the key can delegate the control to another DID.

9.1.1 Controller

The controller of the DID document is the only one that can change the contents. It can assign other controllers, change
keys, change services and revoke the DID. When created, the DID document only has a single controller: the DID
itself and the key related to it. It can choose to change add new controllers and remove existing ones. Changes to DID
documents are only accepted when the network transaction is signed with a controller’s authentication key.

33

https://www.w3.org/TR/did-core/
https://nuts-specification.readthedocs.io

Nuts Node Documentation

9.1.2 Verification Method

All public keys within a Nuts DID Document are listed under verificationMethod.

9.1.3 Assertion Method

Keys referenced from the assertionMethod section are used to sign JWTs in the OAuth flow and for issuing Verifiable
Credentials.

9.1.4 Authentication Method

Keys referenced from the authentication section are used to change the DID document and sign network transactions.

9.1.5 Services

The services section is used to list service endpoints. There are some endpoints that are shared amongst all services,
like the oauth service. But most service endpoints will be coming from specific Bolts.

34 Chapter 9. Decentralized identifiers

https://nuts-foundation.gitbook.io/bolts/

CHAPTER

TEN

VERIFIABLE CREDENTIALS

35

Nuts Node Documentation

36 Chapter 10. Verifiable Credentials

CHAPTER

ELEVEN

VC CONCEPT MAPPING

Verifiable Credentials are, by nature, very dynamic. This is reflected by the data format: either JSON or fields within
a JWT (basically also JSON). There are two ways to cope with this: 1) transform every credential to a fixed concept.
This creates a reliable DB but requires custom code for each credential type. Or 2) store the credential in a document
store and provide a way to interact with the credentials through some interface where magic happens.

We opted for the latter and call it concept mappings. A concept represents a selection of data that is needed to support
bolts. An example concept is a care organization. A key part of a care organization is it’s name. This name is given
to a DID via a Verifiable Credential. Multiple credentials can give a DID its name, the concept mappings makes sure
only a single interface is required at the side of the Nuts node.

See preconfigured concepts for a list of supported concepts.

11.1 Configuration

Credentials are configured to have indices and a template for transformation.

The organization credential configuration looks like this:

concept: organization
credentialType: NutsOrganizationCredential
public: true
indices:
- name: index_id
parts:
- path: id

- name: index_issuer
parts:
- path: issuer

- name: index_subject
parts:
- path: credentialSubject.id
alias: subject

- name: index_name_city
parts:
- path: credentialSubject.organization.name
alias: organization.name
tokenizer: whitespace
transformer: cologne

- path: credentialSubject.organization.city
alias: organization.city

(continues on next page)

37

Nuts Node Documentation

(continued from previous page)

tokenizer: whitespace
transformer: cologne

template: |
{
"id": "<<id>>",
"issuer": "<<issuer>>",
"type": "NutsOrganizationCredential",
"subject": "<<credentialSubject.id>>",
"organization": {
"name": "<<credentialSubject.organization.name>>",
"city": "<<credentialSubject.organization.city>>"

}
}

It contains 4 main parts: concept, credentialType, indices and template. The NutsOrganizationCredential is mapped to
the organization concept. When searching for credentials, you use the concept name. When creating a credential you
use the credential type. When you resolve a credential, you’ll always get the raw credential.

11.1.1 Public

By default credential types are regarded as private. This means they are only synchronized between the issuer and
credentialSubject. It is possible to make credentials public by creating a template for the credential type and add the
public: true setting. Credentials that are created without a template are regarded as private.

11.1.2 Indices

Each configuration may contain a list of indices. Each index has a name and contains a list of parts. The name of the
index is used to identify the index. Each index is scoped to its own credential type. An index part must contain a path.
The path is a JSON path query. The values found at that location will be used for indexing. See go-leia for the syntax
and available options.

An index part may contain an alias. The alias is used as a search key. In the example above, the JSON path creden-
tialSubject.organization.name has an alias of organization.name. This means that in a search query the key organiza-
tion.name can be used. Aliases are not unique to a credential type. This allows for searching over multiple credential
types with a single query.

An index part can also contain a transformer and/or a tokenizer. A tokenizer will split a value into multiple values to
be indexed. For example: the whitespace tokenizer will split a sentence into a list of words to be indexed. The name
healthcare organization the Nutty professor will be split and can be found by just searching for healthcare, organization,
the, Nutty or professor. Possible values for tokenizer: whitespace.

A transformer transforms a value before the value is used as an index key. A transformer will also transform search
parameters that use that index. For example: the lowercase transformer will transform all indexed values and search
params to lowercase. The word Nutty in the previous example could then be found with nutty, NUTTY or any other
combination of upper- and lowercase letters. Possible values for transformer: lowercase, cologne.

The cologne transformer is a phonetic transformer. It’s like soundex but works better for germanic type languages.

38 Chapter 11. VC Concept mapping

https://github.com/nuts-foundation/go-leia

Nuts Node Documentation

11.1.3 Template

The template is used to transform a credential to a common output format when searching for a concept. Values that start
with << and end with >> are JSON path expressions. They are replaced with the result of the JSON path expression
when applied to found credentials. A template is optional. When not defined, the raw credential is returned.

Using arrays is currently not supported in a template.

11.1. Configuration 39

Nuts Node Documentation

40 Chapter 11. VC Concept mapping

CHAPTER

TWELVE

NUTS NODE DEVELOPMENT

12.1 Requirements

Go >= 1.17 is required.

12.2 Building

Just use go build.

12.2.1 Building for exotic environments

You can build and run the Nuts node on more exotic environments, e.g. Raspberry Pis:

• 32-bit ARMv6 (Raspberry Pi Zero): env GOOS=linux GOARCH=arm GOARM=6 go build

12.3 Running tests

Tests can be run by executing

go test ./...

12.4 Code Generation

Code generation is used for generating mocks, OpenAPI client- and servers, and gRPC services. Make sure that
GOPATH/bin is available on PATH and that the dependencies are installed

Install protoc:

MacOS: brew install protobuf

Linux: apt install -y protobuf-compiler

Install Go tools:

make install-tools

41

Nuts Node Documentation

Generating code:

To regenerate all code run the run-generators target from the makefile or use one of the following for a specific
group

Group Command
Mocks make gen-mocks
OpenApi make gen-api
Protobuf + gRCP make gen-protobuf
All make run-generators

12.5 Docs Generation

To generate the documentation, you’ll need python3, sphinx and a bunch of other stuff. After you have installed
python3 (and pip3 if this not already installed) run

pip3 install -r docs/requirements.txt

12.5.1 README

The readme is auto-generated from a template and uses the documentation to fill in the blanks.

make gen-readme

12.5.2 Documentation

The documentation can be build by running the following command from the /docs directory:

make html

42 Chapter 12. Nuts node development

CHAPTER

THIRTEEN

API DEVELOPMENT

When developing APIs, please follow these guidelines.

13.1 Contract first

The Nuts node APIs are specified in `Open API Specification (OAS)<https://swagger.io/specification/>`_. The files
are located under /docs/_static/<engine>/<version>.yaml. Where <engine> is a specific module like crypto
or auth and <version> defines the version of the API. We use version 3.0.y of the OAS.

13.1.1 Versioning

We use versioning of the APIs. This is reflected in both the OAS files and the HTTP paths. Versions must follow the
pattern v and start at v1. These are major versions, any breaking change results in a new major version of the API. New
additions, bug fixes and changes that are backwards compatible may be done in the current version.

13.1.2 Code generation

The OAS files are used for code generation. The makefile contains the gen-api target which will generate the code.
The build target only needs to be extended when a new version or new engine is added. Generated code is always
placed in /<engine>/api/<version>/generated.go.

13.1.3 Return codes

The error return values are generalized for all API calls. The return values follow RFC7807. The definition is available
under /docs/_static/common/error_response.yaml. The error definition can be used in a OAS file:

paths:
/some/path:

get:
responses:

default:
$ref: '../common/error_response.yaml'

The error responses will not be listed as responses in the online generated documentation. To describe error responses,
the specific responses need to be added to the API description:

43

https://tools.ietf.org/html/rfc7807

Nuts Node Documentation

paths:
/some/path:

post:
description: |

Some description on the API

error returns:
* 400 - incorrect input

13.2 Paths

The API paths are designed so different security schemes can be setup easily.

API paths follow the following pattern:

/<context>/<engine>/<version>/<action>

All paths start with a security <context>:

• /internal/** These APIs are meant to be behind a firewall and should only be available to the internal infras-
tructure. All DID Document manipulation APIs fall under this category.

• /n2n/** These APIs must be available to other nodes from the network. This means they must be protected
with the required client certificate as specified by RFC011. The creation of an access token is one example of
such an API.

• /public/** These APIs must be publicly available on a valid domain. No security must be set. These APIs are
used by mobile devices.

After the context, the <engine> is expected. An engine defines a logical unit of functionality. Each engine has its own
OAS file. Then as discussed earlier, the <version> is expected. The last part is the <action>, this part can be freely
chosen in a RESTful manor.

44 Chapter 13. API development

https://nuts-foundation.gitbook.io/drafts/rfc/rfc011-verifiable-credential

CHAPTER

FOURTEEN

ISSUING AND SEARCHING VERIFIABLE CREDENTIALS

14.1 Issuing VCs

As a node, you can issue credentials with each DID you control (whether they are trusted is a different story). A
credential is issued through the API or CLI. The node will add sensible defaults for:

• @context

• id

• issuanceDate

• proof

You are required to provide the credentialSubject, the issuer, the type and an optional expirationDate. So calling
/internal/vcr/v2/issuer/vc with

{
"issuer": "did:nuts:ByJvBu2Ex21tNdn5s8FBnqmRBTCGkqRHms5ci7gKM8rg",
"type": "NutsOrganizationCredential",
"credentialSubject": {

"id": "did:nuts:9UKf9F9sRtiq4gR3bxfGQAeARtJeU8jvPqfWJcFP6ziN",
"organization": {

"name": "Because we care B.V.",
"city": "IJbergen"

}
},
"visibility": "public"

}

Will be expanded by the node to:

{
"context": [
"https://www.w3.org/2018/credentials/v1",
"https://nuts.nl/credentials/v1"

],
"credentialSubject": {
"id": "did:nuts:9UKf9F9sRtiq4gR3bxfGQAeARtJeU8jvPqfWJcFP6ziN",
"organization": {
"city": "IJbergen",
"name": "Because we care B.V."

}
(continues on next page)

45

Nuts Node Documentation

(continued from previous page)

},
"id": "did:nuts:ByJvBu2Ex21tNdn5s8FBnqmRBTCGkqRHms5ci7gKM8rg#a1d8ee3f-f404-44d5-bd07-

→˓71d3b144ce54",
"issuanceDate": "2021-03-05T09:37:05.732811+01:00",
"issuer": "did:nuts:ByJvBu2Ex21tNdn5s8FBnqmRBTCGkqRHms5ci7gKM8rg",
"proof": {
"created": "2021-03-05T09:37:05.732811+01:00",
"jws": "eyJhbGciOiJFUzI1NiIsImI2NCI6ZmFsc2UsImNyaXQiOlsiYjY0Il19..

→˓s6lxJa7pOpqlhcWhJoKRMJIJiD4i+IUkfmhy+rUvNzZayVHAq+lZaFxBsv9rQCe0ewpZq/
→˓6z3hSUOURo6mnHhg==",
"proofPurpose": "assertionMethod",
"type": "JsonWebSignature2020",
"verificationMethod": "did:nuts:ByJvBu2Ex21tNdn5s8FBnqmRBTCGkqRHms5ci7gKM8rg

→˓#gSEtbS2dOsS9PSrV13RwaZHz3Ps6OTI14GvLx8dPqgQ"
},
"type": [
"NutsOrganizationCredential",
"VerifiableCredential"

]
}

The visibility property indicates the contents of the VC are published on the network, so it can be read by everyone.

14.2 Searching VCs

You can search for VCs by providing a VC which should be used for matching in JSON-LD format. Searching works
by posting a Verifiable Credential to /internal/vcr/v2/search that contains fields to match. The operation yields an array
containing the matched verifiable credentials.

The example below searches for a NutsOrganizationCredential (note that the query field contains the credential):

{
"query": {

"@context": [
"https://www.w3.org/2018/credentials/v1",
"https://nuts.nl/credentials/v1"

],
"type": ["VerifiableCredential" ,"NutsOrganizationCredential"],
"credentialSubject": {

"id": "did:nuts:SKUYYi2g88ohjhiu49Q13ZWGXvp678sjNiM7UHUCMyw",
"organization": {

"name": "Because we care B.V.",
"city": "IJbergen"

}
}

}
}

Note the fields @context and type, these are required for making it a valid VC in JSON-LD. In the example above they
also contain Nuts specific contexts and types (since we’re searching for a Nuts VC).

By default only VCs from trusted issuers are returned. You can specify the searchOptions field to include VCs from

46 Chapter 14. Issuing and searching Verifiable Credentials

Nuts Node Documentation

untrusted issuers.

14.2. Searching VCs 47

Nuts Node Documentation

48 Chapter 14. Issuing and searching Verifiable Credentials

CHAPTER

FIFTEEN

EVENTS

Each event consists of a single JSON encoded message that is categorized by its subject which in term are grouped into
streams. Each stream defines how to handle limits, storage, data retention, deliverability etc.

15.1 Streams

Name Summary Policy Durable Message
limit

Stor-
age

nuts-
disposable

Main event-
stream

When the stream is full old messages will be
discarded

No 100 Mem-
ory

49

Nuts Node Documentation

50 Chapter 15. Events

CHAPTER

SIXTEEN

NUTS NODE APIS

Below you can discover the Nuts Node APIs and download their OpenAPI specifications:

• Common (required by others)

• DID Manager

• Crypto

• Verifiable Credential Registry (v2)

• Verifiable Data Registry

• Network

• Auth

51

../_static/common/error_response.yaml
../_static/didman/v1.yaml
../_static/crypto/v1.yaml
../_static/vcr/v2.yaml
../_static/vdr/v1.yaml
../_static/network/v1.yaml
../_static/auth/v1.yaml

Nuts Node Documentation

52 Chapter 16. Nuts Node APIs

CHAPTER

SEVENTEEN

NUTS NODE CONFIG

The Nuts node can be configured using a YAML configuration file, environment variables and commandline params.

The parameters follow the following convention: $ nuts --parameter X is equal to $ NUTS_PARAMETER=X nuts
is equal to parameter: X in a yaml file.

Or for this piece of yaml

nested:
parameter: X

is equal to $ nuts --nested.parameter X is equal to $ NUTS_NESTED_PARAMETER=X nuts

Config parameters for engines are prepended by the engine.ConfigKey by default (configurable):

engine:
nested:

parameter: X

is equal to $ nuts --engine.nested.parameter X is equal to $ NUTS_ENGINE_NESTED_PARAMETER=X nuts

While most options are a single value, some are represented as a list (indicated with the square brackets in the table
below). To provide multiple values through flags or environment variables you can separate them with a comma (,).

17.1 Ordering

Command line parameters have the highest priority, then environment variables, then parameters from the configfile
and lastly defaults. The location of the configfile is determined by the environment variable NUTS_CONFIGFILE or the
commandline parameter --configfile. If both are missing the default location ./nuts.yaml is used.

17.2 Server options

The following options can be configured on the server:

Key Default Description
configfile nuts.yaml Nuts config file
datadir ./data Directory where the node stores its files.
loggerformat text Log format (text, json)
strictmode false When set, insecure settings are forbidden.
verbosity info Log level (trace, debug, info, warn, error)

continues on next page

53

Nuts Node Documentation

Table 1 – continued from previous page
Key Default Description
http.default.address :1323 Address and port the server will be listening to
http.default.cors.origin [] When set, enables CORS from the specified origins for the on default HTTP interface.
Auth
auth.clockskew 5000 Allowed JWT Clock skew in milliseconds
auth.contractvalidators [irma,uzi,dummy] sets the different contract validators to use
auth.http.timeout 30 HTTP timeout (in seconds) used by the Auth API HTTP client
auth.irma.autoupdateschemas true set if you want automatically update the IRMA schemas every 60 minutes.
auth.irma.schememanager pbdf IRMA schemeManager to use for attributes. Can be either ‘pbdf’ or ‘irma-demo’.
auth.publicurl public URL which can be reached by a users IRMA client, this should include the scheme and domain: https://example.com. Additional paths should only be added if some sort of url-rewriting is done in a reverse-proxy.
Crypto
crypto.storage fs Storage to use, ‘fs’ for file system, vaultkv for Vault KV store, default: fs.
crypto.vault.address The Vault address. If set it overwrites the VAULT_ADDR env var.
crypto.vault.pathprefix kv The Vault path prefix. default: kv.
crypto.vault.token The Vault token. If set it overwrites the VAULT_TOKEN env var.
Event manager
events.nats.hostname localhost Hostname for the NATS server
events.nats.port 4222 Port where the NATS server listens on
events.nats.storagedir Directory where file-backed streams are stored in the NATS server
events.nats.timeout 30 Timeout for NATS server operations
JDONLD
jsonld.contexts.localmapping [https://nuts.nl/credentials/v1=assets/contexts/nuts.ldjson,https://www.w3.org/2018/credentials/v1=assets/contexts/w3c-credentials-v1.ldjson,https://w3c-ccg.github.io/lds-jws2020/contexts/lds-jws2020-v1.json=assets/contexts/lds-jws2020-v1.ldjson,https://schema.org=assets/contexts/schema-org-v13.ldjson] This setting allows mapping external URLs to local files for e.g. preventing external dependencies. These mappings have precedence over those in remoteallowlist.
jsonld.contexts.remoteallowlist [https://schema.org,https://www.w3.org/2018/credentials/v1,https://w3c-ccg.github.io/lds-jws2020/contexts/lds-jws2020-v1.json] In strict mode, fetching external JSON-LD contexts is not allowed except for context-URLs listed here.
Network
network.bootstrapnodes [] List of bootstrap nodes (<host>:<port>) which the node initially connect to.
network.certfile PEM file containing the server certificate for the gRPC server. Required when enableTLS is true.
network.certkeyfile PEM file containing the private key of the server certificate. Required when network.enabletls is true.
network.disablenodeauthentication false Disable node DID authentication using client certificate, causing all node DIDs to be accepted. Unsafe option, only intended for workshops/demo purposes. Not allowed in strict-mode.
network.enablediscovery true Whether to enable automatic connecting to other nodes.
network.enabletls true Whether to enable TLS for incoming and outgoing gRPC connections. When certfile or certkeyfile is specified it defaults to true, otherwise false.
network.grpcaddr :5555 Local address for gRPC to listen on. If empty the gRPC server won’t be started and other nodes will not be able to connect to this node (outbound connections can still be made).
network.nodedid Specifies the DID of the organization that operates this node, typically a vendor for EPD software. It is used to identify the node on the network. If the DID document does not exist of is deactivated, the node will not start.
network.protocols [] Specifies the list of network protocols to enable on the server. They are specified by version (1, 2). If not set, all protocols are enabled.
network.truststorefile PEM file containing the trusted CA certificates for authenticating remote gRPC servers.
network.v1.advertdiagnosticsinterval 5000 Interval (in milliseconds) that specifies how often the node should broadcast its diagnostic information to other nodes (specify 0 to disable).
network.v1.adverthashesinterval 2000 Interval (in milliseconds) that specifies how often the node should broadcast its last hashes to other nodes.
network.v1.collectmissingpayloadsinterval 60000 Interval (in milliseconds) that specifies how often the node should check for missing payloads and broadcast its peers for it (specify 0 to disable). This check might be heavy on larger DAGs so make sure not to run it too often.
network.v2.diagnosticsinterval 5000 Interval (in milliseconds) that specifies how often the node should broadcast its diagnostic information to other nodes (specify 0 to disable).
network.v2.gossipinterval 5000 Interval (in milliseconds) that specifies how often the node should gossip its new hashes to other nodes.
VCR
vcr.overrideissueallpublic true Overrides the “Public” property of a credential when issuing credentials: if set to true, all issued credentials are published as public credentials, regardless of whether they’re actually marked as public.

This table is automatically generated using the configuration flags in the core and engines. When they’re changed the
options table must be regenerated using the Makefile:

$ make update-docs

54 Chapter 17. Nuts node config

https://example.com
https://nuts.nl/credentials/v1=assets/contexts/nuts.ldjson,https://www.w3.org/2018/credentials/v1=assets/contexts/w3c-credentials-v1.ldjson,https://w3c-ccg.github.io/lds-jws2020/contexts/lds-jws2020-v1.json=assets/contexts/lds-jws2020-v1.ldjson,https://schema.org=assets/contexts/schema-org-v13.ldjson
https://schema.org,https://www.w3.org/2018/credentials/v1,https://w3c-ccg.github.io/lds-jws2020/contexts/lds-jws2020-v1.json

CHAPTER

EIGHTEEN

CONTRIBUTE

If you want to contribute to any of the nuts foundation projects or to this documentation, please fork the correct project
from Github and create a pull-request.

18.1 Documentation contributions

Documentation is written in Restructured Text. A CheatSheet can be found here.

You can test your documentation by installing the required components.

18.2 Documentation initialisation

When starting a new project, the documentation can be initialised using:

sphinx-quickstart docs

This will start the interactive setup of sphinx with a document root at docs. For Nuts projects we use that specific
directory for documentation in a code project. You might have noticed that the nuts-documentation repo uses the root
directory as documentation root.

Most defaults will do, although we use intersphinx to go back-and-forth between the different sub-projects.

55

https://github.com/nuts-foundation
https://thomas-cokelaer.info/tutorials/sphinx/rest_syntax.html

Nuts Node Documentation

56 Chapter 18. Contribute

CHAPTER

NINETEEN

RELEASE NOTES

Whats has been changed, and how to update between versions.

19.1 Brazil (v2.0.0)

Release date: 2022-04-29

This version implements the V2 network protocol. The V2 network protocol combines gossip style messages with a
fast reconciliation protocol for larger difference sets. The protocol can quickly identify hundreds of missing transac-
tions. The new protocol is much faster than the old protocol and its performance is currently limited by the database
performance.

Besides the improved network protocol, this version also implements semantic searching for Verifiable Credentials.
Till this version, searching for VCs only supported the NutsOrganizationCredential and NutsAuthorizationCredential.
With the new semantic search capabilities all kinds of credentials can be issued and found. This is the first step for the
Nuts node to become a toolbox that supports multiple domains.

Full Changelog: https://github.com/nuts-foundation/nuts-node/compare/v1.0.0. . . v2.0.0

19.2 Almond (v1.0.0)

Release date: 2022-04-01

This is the initial release of the Nuts node reference implementation. It implements RFC001 - RFC016 specified by the
Nuts specification. This release is intended for developers. It contains a stable API that will be backwards compatible
for the next versions. The releases until the first production release will mainly focus on network and Ops related
features.

To start using this release, please consult the getting started section.

19.2.1 Features / improvements

Future releases will list new features and improvements that have been added since the previous release.

57

https://github.com/nuts-foundation/nuts-node/compare/v1.0.0...v2.0.0
https://nuts-foundation.gitbook.io

Nuts Node Documentation

19.2.2 Dropped features

New major releases might drop support for features that have been deprecated in a previous release. Keep an eye on
this section for every release.

19.2.3 Deprecated features

Some features will be deprecated because they have been succeeded by an improved version or when they are no longer
used. Removing old code helps in reducing maintenance costs of the code base. Features that are marked as deprecated
will be listed here. Any vendor using these features will have until next version to migrate to the alternative. Keep an
eye on this section for every release.

• VCR V1 API is deprecated and will be removed in the next release. Please migrate all calls to the V2 API.

19.2.4 Bugfixes

This section contains a list of bugfixes. It’ll match resolved Github issues with the bug tag.

58 Chapter 19. Release notes

CHAPTER

TWENTY

ROADMAP

59

Nuts Node Documentation

60 Chapter 20. Roadmap

CHAPTER

TWENTYONE

NUTS NODE MONITORING

21.1 Basic service health

A status endpoint is provided to check if the service is running and if the web server has been started. The endpoint is
available over http so it can be used by a wide range of health checking services. It does not provide any information
on the individual engines running as part of the executable. The main goal of the service is to give a YES/NO answer
for if the service is running?

GET /status

It’ll return an “OK” response and a 200 status code.

21.2 Basic diagnostics

GET /status/diagnostics

It’ll return some text displaying the current status of the various services:

Status
Registered engines: [Status Logging]

Logging
verbosity: INFO

If you supply application/json for the Accept HTTP header it will return the diagnostics in JSON format.

21.3 Metrics

The Nuts service executable has build-in support for Prometheus. Prometheus is a time-series database which supports
a wide variety of services. It also allows for exporting metrics to different visualization solutions like Grafana. See
https://prometheus.io/ for more information on how to run Prometheus. The metrics are exposed at /metrics

61

https://prometheus.io/

Nuts Node Documentation

21.3.1 Configuration

In order for metrics to be gathered by Prometheus. A job has to be added to the prometheus.yml configuration file.
Below is a minimal configuration file that will only gather Nuts metrics:

my global config
global:
scrape_interval: 15s # Set the scrape interval to every 15 seconds. Default is␣

→˓every 1 minute.
evaluation_interval: 15s # Evaluate rules every 15 seconds. The default is every 1␣

→˓minute.
scrape_timeout is set to the global default (10s).

Load rules once and periodically evaluate them according to the global 'evaluation_
→˓interval'.
rule_files:
- "first_rules.yml"
- "second_rules.yml"

A scrape configuration containing exactly one endpoint to scrape:
Here it's Prometheus itself.
scrape_configs:
The job name is added as a label `job=<job_name>` to any timeseries scraped from this␣

→˓config.
- job_name: 'nuts'
metrics_path: '/metrics'
scrape_interval: 5s
static_configs:
- targets: ['127.0.0.1:1323']

It’s imported to enter the correct IP/domain and port where the Nuts node can be found!

21.3.2 Exported metrics

The Nuts service executable exports the following metrics by default. These cover the basic needs for monitoring the
process and http layer.

HELP go_gc_duration_seconds A summary of the pause duration of garbage collection␣
→˓cycles.
TYPE go_gc_duration_seconds summary
go_gc_duration_seconds{quantile="0"} 4.08e-05
go_gc_duration_seconds{quantile="0.25"} 6.25e-05
go_gc_duration_seconds{quantile="0.5"} 8.44e-05
go_gc_duration_seconds{quantile="0.75"} 0.0001046
go_gc_duration_seconds{quantile="1"} 0.0004961
go_gc_duration_seconds_sum 0.0016542
go_gc_duration_seconds_count 14
HELP go_goroutines Number of goroutines that currently exist.
TYPE go_goroutines gauge
go_goroutines 79
HELP go_info Information about the Go environment.
TYPE go_info gauge
go_info{version="go1.13.12"} 1

(continues on next page)

62 Chapter 21. Nuts node monitoring

Nuts Node Documentation

(continued from previous page)

HELP go_memstats_alloc_bytes Number of bytes allocated and still in use.
TYPE go_memstats_alloc_bytes gauge
go_memstats_alloc_bytes 9.284216e+06
HELP go_memstats_alloc_bytes_total Total number of bytes allocated, even if freed.
TYPE go_memstats_alloc_bytes_total counter
go_memstats_alloc_bytes_total 6.929336e+07
HELP go_memstats_buck_hash_sys_bytes Number of bytes used by the profiling bucket hash␣
→˓table.
TYPE go_memstats_buck_hash_sys_bytes gauge
go_memstats_buck_hash_sys_bytes 1.477216e+06
HELP go_memstats_frees_total Total number of frees.
TYPE go_memstats_frees_total counter
go_memstats_frees_total 394819
HELP go_memstats_gc_cpu_fraction The fraction of this program's available CPU time␣
→˓used by the GC since the program started.
TYPE go_memstats_gc_cpu_fraction gauge
go_memstats_gc_cpu_fraction 0.0005164729882960839
HELP go_memstats_gc_sys_bytes Number of bytes used for garbage collection system␣
→˓metadata.
TYPE go_memstats_gc_sys_bytes gauge
go_memstats_gc_sys_bytes 2.394112e+06
HELP go_memstats_heap_alloc_bytes Number of heap bytes allocated and still in use.
TYPE go_memstats_heap_alloc_bytes gauge
go_memstats_heap_alloc_bytes 9.284216e+06
HELP go_memstats_heap_idle_bytes Number of heap bytes waiting to be used.
TYPE go_memstats_heap_idle_bytes gauge
go_memstats_heap_idle_bytes 5.24288e+07
HELP go_memstats_heap_inuse_bytes Number of heap bytes that are in use.
TYPE go_memstats_heap_inuse_bytes gauge
go_memstats_heap_inuse_bytes 1.2255232e+07
HELP go_memstats_heap_objects Number of allocated objects.
TYPE go_memstats_heap_objects gauge
go_memstats_heap_objects 32515
HELP go_memstats_heap_released_bytes Number of heap bytes released to OS.
TYPE go_memstats_heap_released_bytes gauge
go_memstats_heap_released_bytes 4.8848896e+07
HELP go_memstats_heap_sys_bytes Number of heap bytes obtained from system.
TYPE go_memstats_heap_sys_bytes gauge
go_memstats_heap_sys_bytes 6.4684032e+07
HELP go_memstats_last_gc_time_seconds Number of seconds since 1970 of last garbage␣
→˓collection.
TYPE go_memstats_last_gc_time_seconds gauge
go_memstats_last_gc_time_seconds 1.5942182098267434e+09
HELP go_memstats_lookups_total Total number of pointer lookups.
TYPE go_memstats_lookups_total counter
go_memstats_lookups_total 0
HELP go_memstats_mallocs_total Total number of mallocs.
TYPE go_memstats_mallocs_total counter
go_memstats_mallocs_total 427334
HELP go_memstats_mcache_inuse_bytes Number of bytes in use by mcache structures.
TYPE go_memstats_mcache_inuse_bytes gauge
go_memstats_mcache_inuse_bytes 13888

(continues on next page)

21.3. Metrics 63

Nuts Node Documentation

(continued from previous page)

HELP go_memstats_mcache_sys_bytes Number of bytes used for mcache structures obtained␣
→˓from system.
TYPE go_memstats_mcache_sys_bytes gauge
go_memstats_mcache_sys_bytes 16384
HELP go_memstats_mspan_inuse_bytes Number of bytes in use by mspan structures.
TYPE go_memstats_mspan_inuse_bytes gauge
go_memstats_mspan_inuse_bytes 115736
HELP go_memstats_mspan_sys_bytes Number of bytes used for mspan structures obtained␣
→˓from system.
TYPE go_memstats_mspan_sys_bytes gauge
go_memstats_mspan_sys_bytes 229376
HELP go_memstats_next_gc_bytes Number of heap bytes when next garbage collection will␣
→˓take place.
TYPE go_memstats_next_gc_bytes gauge
go_memstats_next_gc_bytes 1.6785728e+07
HELP go_memstats_other_sys_bytes Number of bytes used for other system allocations.
TYPE go_memstats_other_sys_bytes gauge
go_memstats_other_sys_bytes 1.584792e+06
HELP go_memstats_stack_inuse_bytes Number of bytes in use by the stack allocator.
TYPE go_memstats_stack_inuse_bytes gauge
go_memstats_stack_inuse_bytes 2.424832e+06
HELP go_memstats_stack_sys_bytes Number of bytes obtained from system for stack␣
→˓allocator.
TYPE go_memstats_stack_sys_bytes gauge
go_memstats_stack_sys_bytes 2.424832e+06
HELP go_memstats_sys_bytes Number of bytes obtained from system.
TYPE go_memstats_sys_bytes gauge
go_memstats_sys_bytes 7.2810744e+07
HELP go_threads Number of OS threads created.
TYPE go_threads gauge
go_threads 18
HELP process_cpu_seconds_total Total user and system CPU time spent in seconds.
TYPE process_cpu_seconds_total counter
process_cpu_seconds_total 2.58
HELP process_max_fds Maximum number of open file descriptors.
TYPE process_max_fds gauge
process_max_fds 1.048576e+06
HELP process_open_fds Number of open file descriptors.
TYPE process_open_fds gauge
process_open_fds 25
HELP process_resident_memory_bytes Resident memory size in bytes.
TYPE process_resident_memory_bytes gauge
process_resident_memory_bytes 4.5256704e+07
HELP process_start_time_seconds Start time of the process since unix epoch in seconds.
TYPE process_start_time_seconds gauge
process_start_time_seconds 1.59421820085e+09
HELP process_virtual_memory_bytes Virtual memory size in bytes.
TYPE process_virtual_memory_bytes gauge
process_virtual_memory_bytes 1.37965568e+08
HELP process_virtual_memory_max_bytes Maximum amount of virtual memory available in␣
→˓bytes.
TYPE process_virtual_memory_max_bytes gauge

(continues on next page)

64 Chapter 21. Nuts node monitoring

Nuts Node Documentation

(continued from previous page)

process_virtual_memory_max_bytes -1
HELP promhttp_metric_handler_requests_in_flight Current number of scrapes being served.
TYPE promhttp_metric_handler_requests_in_flight gauge
promhttp_metric_handler_requests_in_flight 1
HELP promhttp_metric_handler_requests_total Total number of scrapes by HTTP status␣
→˓code.
TYPE promhttp_metric_handler_requests_total counter
promhttp_metric_handler_requests_total{code="200"} 0
promhttp_metric_handler_requests_total{code="500"} 0
promhttp_metric_handler_requests_total{code="503"} 0

21.3.3 Network DAG Visualization

All network transactions form a directed acyclic graph (DAG) which helps achieving consistency and data completeness.
Since it’s a hard to debug, complex structure, the network API provides a visualization which can be queried from
/internal/network/v1/diagnostics/graph. It is returned in the dot format which can then be rendered to an image using
dot or graphviz (given you saved the output to input.dot):

dot -T png -o output.png input.dot

21.3. Metrics 65

Nuts Node Documentation

66 Chapter 21. Nuts node monitoring

CHAPTER

TWENTYTWO

ADMINSTERING YOUR NODE

The Nuts executable this project provides can be used to both run a Nuts server (a.k.a. node) and administer a running
node remotely. This chapter explains how to administer your running Nuts node.

22.1 Prerequisites

The following is needed to run a Nuts node:

1. Nuts executable for your platform.

2. The address of your running Nuts node. You can pass this using the address variable.

22.2 Commands

Run the executable without command or flags, or with the help command to find out what commands are supported:

$ nuts

For example, to list all network transactions in your node (replace the value of NUTS_ADDRESS with the HTTP address
of your Nuts node):

$ NUTS_ADDRESS=my-node:1323 nuts network list

The following options can be supplied when running CLI commands:

Key Default Description
ad-
dress

local-
host:1323

Address of the remote node. Must contain at least host and port, URL scheme may be omitted.
In that case it ‘http://’ is prepended.

time-
out

10s Client time-out when performing remote operations, such as ‘500ms’ or ’10s’. Refer to Golang’s
‘time.Duration’ syntax for a more elaborate description of the syntax.

67

http://

Nuts Node Documentation

68 Chapter 22. Adminstering your node

CHAPTER

TWENTYTHREE

CONFIGURING FOR PRODUCTION

Running a Nuts node in a production environment has additional requirements regarding security and data integrity
compared to development or test environments. This page instructs how to configure your node for running in a pro-
duction environment and what to consider.

23.1 Persistence

All data the node produces is stored on disk in the configured data directory (datadir). It is recommended to backup
everything in that directory.

The private keys are stored in a storage backend. Currently 2 options are available.

23.1.1 Vault

This storage backend is the recommended way of storing secrets. It uses the Vault KV version 1 store. The prefix
defaults to kv and can be configured using the crypto.vault.pathprefix option. There needs to be a KV Secrets Engine
(v1) enabled under this prefix path.

All private keys are stored under the path <prefix>/nuts-private-keys/*. Each key is stored under the kid, resulting in
a full key path like kv/nuts-private-keys/did:nuts:123#abc. A Vault token must be provided by either configuring it
using the config crypto.vault.token or setting the VAULT_TOKEN environment variable. The token must have a vault
policy which enables READ and WRITES rights on the path. In addition it needs to READ the token information
“auth/token/lookup-self” which should be part of the default policy.

23.1.2 Filesystem

This is the default backend but not recommended for production. It stores keys unencrypted on disk. Make sure to
include the directory in your backups and keep these on a safe place. If you want to use filesystem in strict-mode, you
have to set it explicitly, otherwise the node fails during startup.

69

https://www.vaultproject.io/docs/secrets/kv/kv-v1

Nuts Node Documentation

23.2 Strict mode

By default the node runs in a mode which allows the operator run configure the node in such a way that it is less secure.
For production it is recommended to enable strictmode which blocks some of the unsafe configuration options (e.g.
using the IRMA demo scheme).

23.3 HTTP Interface Binding

By default all HTTP endpoints get bound on :1323 which generally isn’t usable for production, since some endpoints
are required to be accessible by the public and others only meant for administrator or your own XIS. You can determine
the intended public by looking at the first part of the URL.

• Endpoints that start with /public should be accessible by the general public,

• /internal is meant for XIS application integration and administrators.

It’s advisable to make sure internal endpoints aren’t reachable from public networks. The HTTP configuration facilitates
this by allowing you to bind sets of endpoints to a different HTTP port. This is done through the http configuration:

http:
The following is the default binding which endpoints are bound to,
which don't have an alternative bind specified under `alt`. Since it's a default it␣

→˓can be left out or
be used to override the default bind address.
default:
address: :1323

alt:
The following binds all endpoints starting with `/internal` to `internal.lan:1111`
internal:
address: internal.lan:1111

The following binds all endpoints starting with `/public` to `nuts.vendor.nl:443`
public:
address: nuts.vendor.nl:443
The following enables cross-domain requests (CORS) from irma.vendor.nl
cors:
origin:
- irma.vendor.nl

The following binds all endpoints starting with `/status` to all interfaces on `:80`
status:
address: :80

23.3.1 Cross Origin Resource Sharing (CORS)

In some deployments CORS can be required for the public IRMA authentication endpoints when the user-facing au-
thentication page is hosted on a (sub)domain that differs from Nuts Node’s IRMA backend. CORS can be enabled on
a specific HTTP interface by specifying the domains allowed to make CORS requests as cors.origin (see the example
above). Although you can enable CORS on the default endpoint it’s not advised to do so in a production environment,
because CORS itself opens up new attack vectors on node administrators.

70 Chapter 23. Configuring for Production

Nuts Node Documentation

23.4 Diagnostics

To aid problem diagnosis every node in a network should share some information about itself; the type and version of
software it’s running, which peers it is connected to and how long it’s been up. This helps others diagnosing issues when
others experience communication problems with your, and other nodes. Although discouraged, this can be disabled by
specifying 0 for network.advertdiagnosticsinterval.

23.5 Nuts Network SSL/TLS Deployment Layouts

This section describes which deployment layouts are supported regarding SSL/TLS. In all layouts there should be X.509
server and client certificates issued by a Certificate Authority trusted by the network, if the node operator wants other
Nuts nodes to be able to connect to the node and vice versa.

This is the simplest layout where the Nuts node is directly accessible from the internet:

This layout has the following requirements:

• X.509 server certificate and private key must be configured on the Nuts node.

• SSL/TLS terminator must use the trust anchors as specified by the network as root CA trust bundle.

In this layout incoming TLS traffic is decrypted on a SSL/TLS terminator and then being forwarded to the Nuts node.
This is layout is typically used to provide layer 7 load balancing and/or securing traffic “at the gates”:

This layout has the following requirements:

• X.509 server certificate and private key must be present on the SSL/TLS terminator.

• X.509 client certificate must be configured on the Nuts node.

• SSL/TLS terminator must use the trust anchors as specified by the network as root CA trust bundle.

In this layout incoming TLS traffic is forwarded to the Nuts node without being decrypted:

Requirements are the same as for the Direct WAN Connection layout.

23.4. Diagnostics 71

Nuts Node Documentation

72 Chapter 23. Configuring for Production

CHAPTER

TWENTYFOUR

CONTACT

24.1 Information

More information about the Nuts foundation can be found at nuts.nl

24.2 Communication

The main means of communication is via Slack.

73

https://nuts.nl
https://nuts-foundation.slack.com

	“Hello World” on Docker
	Running on Docker
	Mounts
	Docker run
	Docker Compose

	Running the native binary
	Building
	Starting

	Setting up your node for a network
	Prerequisites
	Configuring
	YAML Configuration File
	Node TLS Certificate
	Node Identity
	Node Discovery

	Care Organizations

	Getting Started on customer integration
	Vendor integration
	Create and store a vendor DID
	Setting vendor contact information
	Adding endpoints

	Organization integration
	Create and store a customer DID
	Issue a Nuts Organization Credential
	Trusting other vendors as issuer
	Enabling a bolt

	Signing a contract with IRMA
	Basic requirements
	IRMA flow
	Configuring the Nuts node
	Setting up the frontend
	Setting up the backend
	Starting a session
	Getting the session result

	Getting started with Authorizations
	Introduction
	Bolt
	Prerequisites

	Registering a NutsAuthorizationCredential
	issuer
	type
	visibility
	credentialSubject.id
	credentialSubject.purposeOfUse
	credentialSubject.subject
	credentialSubject.legalBase
	credentialSubject.resources

	Searching for authorization credentials
	Return values

	Getting Started on EHR integration
	Resolving Bolt endpoints
	Searching organizations
	Resolving endpoints

	Receiving Authorization Credentials

	Decentralized identifiers
	DID Documents
	Controller
	Verification Method
	Assertion Method
	Authentication Method
	Services

	Verifiable Credentials
	VC Concept mapping
	Configuration
	Public
	Indices
	Template

	Nuts node development
	Requirements
	Building
	Building for exotic environments

	Running tests
	Code Generation
	Docs Generation
	README
	Documentation

	API development
	Contract first
	Versioning
	Code generation
	Return codes

	Paths

	Issuing and searching Verifiable Credentials
	Issuing VCs
	Searching VCs

	Events
	Streams

	Nuts Node APIs
	Nuts node config
	Ordering
	Server options

	Contribute
	Documentation contributions
	Documentation initialisation

	Release notes
	Brazil (v2.0.0)
	Almond (v1.0.0)
	Features / improvements
	Dropped features
	Deprecated features
	Bugfixes

	Roadmap
	Nuts node monitoring
	Basic service health
	Basic diagnostics
	Metrics
	Configuration
	Exported metrics
	Network DAG Visualization

	Adminstering your node
	Prerequisites
	Commands

	Configuring for Production
	Persistence
	Vault
	Filesystem

	Strict mode
	HTTP Interface Binding
	Cross Origin Resource Sharing (CORS)

	Diagnostics
	Nuts Network SSL/TLS Deployment Layouts

	Contact
	Information
	Communication

